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Synchronization of coupled systems via parameter perturbations
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We consider coupled identical chaotic systems. In some circumstances, the coupled systems synchronize.
When this does not happen naturally, we derive methods based on small parameter perturbations which result
in synchronous behavior. The perturbations are applied in the neighborhood of a fixed or periodic point in the
synchronous subspace which is stable in the normal direction. By keeping iterates in the neighborhood of such
points using parameter perturbations, they are naturally drawn closer to the subspace by the stable manifold of
the fixed or periodic points. Different ways of varying the parameters are also considered. Methods for
two-dimensional systems are first explored and then extended to higher-dimensional systems. Examples are
presented to illustrate the methofiS1063-651X98)03903-4

PACS numbd(s): 05.45+b

[. INTRODUCTION zation in low-dimensional systems when it would not natu-
The synchronization of chaotic systems, along with ther.a lly occur via the app_l|cat|on of S”.”a” parameter pertgrba
tions based on only a linear approximation to the map in the

control of chaos, has been a popular focus for recent re-". , L : . )
: L neighborhood of a fixed or periodic point. This approach is

search. The problem consists of the synchronization of twq.” ~ . .
) . . . Similar to the method for controlling chaos which was pro-

or more identical coupled chaotic oscillators such that they

o ) . ) ) . . _posed by Ott, Grebogi, and YorKé&7] which involves sta-
both eXh'b.'t |dent'|g;ell tChakOlt)'C behavuf)rt.hAtf flrzt S'ghtt Ith's bilizing a fixed or periodic point contained in the attractor
SEems an Impossible task because of the tundamental proge, gmq| parameter perturbations. In this case, a fixed or
erty of chaotic systems of sensitive dependence upon initi

- eriodic point in the synchronous subspace is used and pa-
conditions. Indeed, Tang, Mees, and Chiiapostulate that  ameter perturbations are employed to draw iterates close to

chaotic systems defy synchronization. If we were to observenis point. However, once this has been achieved, the control
the dynamics of two identical, uncoupled chaotic oscillatorss tyrned off so that chaotic motion close to the invariant
each giVen almost identical initial Conditions, eVentua”y Wesubspace is restored. In some cases, depending on the
would see their trajectories diverge from a synchron@is method of parameter perturbation, it is also possible to use
at least, near synchrongustate to an asynchronous state. It perturbations to place an iteratepproximately on the in-
is, of course, impossible to construct two identical chaoticvariant subspace itself.
oscillators in the first place, and so the problem is com- Lai and Grebog[11,12 proposed a method for synchro-
pounded in that we wish to “synchronize” two or more al- nizing two identical systems via parameter perturbations.
most identical systems. However, in their case, there was no coupling between the
Much of the interest in this area was initiated by Pecorawo systemgother than that induced by the parameter per-
and Carroll[2], who demonstrated that, under certain cir-turbationg. One system was allowed to iterate chaotically
cumstances, it is possible to synchronize the behavior of twevhile parameter perturbations were then applied to the sec-
chaotic systems by linking them with a common signal orond system in order to keep it in step, or synchronized, with
signals. Provided that these signals are appropriately chosetie first. The parameter perturbations were derived from a
synchronization of the systems will occur spontaneously ainearization about a chaotic “target” trajectory of the first
the time development of the coupled system progresses. Yaystem. This requires an approximation to the linearization
mada and Fujisak3] use a simple coupling technique in of the system over the whole of the attractor. Once this has
order to achieve synchronization of two independent oscillabeen obtained, the parameter perturbations can be deter-
tors. The strength of the coupling signal must be above anined at each iteration by requiring that the next iterate be
certain threshold for synchronization to occur naturally. moved onto the stable direction at that point. This approach
The synchronization of chaotic oscillators has a numbehas the significant disadvantage that it requires a large
of applications. Hayes, Grebogi, and (4] looked at trans- amount of global knowledge of the system. In particular, the
mitting data securely by using a pair of coupled oscillatorslinearization of the system is required over the whole of the
Kocarev and Stojanovskb] have also investigated the ap- attractor. Also parameter perturbations must be continually
plication of chaotic synchronization to secure communicaapplied in order to maintain the synchronization. Using our
tions. Roy and Thornburfs] have looked at the experimen- approach in which there is a natural coupling between the
tal synchronization of chaotic lasers. Further recent work irsystems but synchronization does not naturally occur, only a
this area can be found in the papers of Yu, Kwak, and Limlocal approximation to the dynamics near to a periodic point
[7,8] and Cuomo, Oppenheim, and Strogf®Z. For an ex- is required which is much easier and cheaper to determine.
cellent summary of some of the earlier work on synchroni-Moreover parameter perturbations are only applied when the
zation, see OgorzalgK.0]. difference between the two systems grows too large and
The problem we consider is that of obtaining synchroni-while this difference is small, parameter perturbations are not
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required so that the system behaves in its normal, unper- Yhie1=f(Yq,p* + 80, +c(Xn—Yn), (1b)
turbed state.

Another approach for synchronizing coupled systems uswheref: RXR—R andceR is the coupling parameter. We
ing parameter perturbations has been proposed by Nagaissume that perturbations can be made independently in each
Hua, and Lai13]. Their method consists of making param- of the two systems and so there are two perturbation param-
eter perturbations at every iteration. The criterion for deteretersép,, anddq, . We suppose that whesp,,= 6q,=0, the
mining the perturbations is that one component of the normatlynamics in the invariant subspace definedXdyY is cha-
variables should be zero at the next iteration. It is also im-otic with a positive normal Lyapunov exponent so that the
portant with this method that the parameter chosen for perbasin of attraction of this synchronized state in the whole
turbations has an effect on the normal variables and not justpace has measure zdrb4]. We also assume that the dy-
on those in the invariant subspace. Their method is illushamics of the coupled system is chaotic in the whole space
trated with a two-dimensional map which has a one-and that the attractor is “stuck on” to the invariant subspace
dimensional invariant subspace. It is significant, howeverso that the iterates spend a long time close to the invariant
that this map is not associated with a synchronization probsubspac¢16]. Our aim is to use the parameter perturbations
lem. There are a number of drawbacks with this approachdp,, and éq,, to synchronize the coupled system. In practice,
The first is that it requires that the map be known althougtthis means keeping the iterates very close to the invariant
an alternativead hocmethod is also suggested which doessubspace for long time periods. The methods that we use are
not require the map to be known. This is again because glaessentially “local” methods in that they require information
bal information is required as perturbations are made at ewnly in a small neighborhood of a fixed or periodic point
ery iteration. Since our method is essentially local, with per-which is contained in the invariant subspace. This is in con-
turbations only being made when iterates are close to &ast to the methods of Lai and Grebddil,12] and Nagai,
periodic point, the map does not need to be known since &ua, and La{13] where global information about the attrac-
local approximation near to the periodic points can easily béor is required.
obtained. The requirement that the parameter perturbs the When §p,=8q,, Egs.(1) have aZ, symmetry defined
normal variables implies that it will also perturb the invariant by
subspace, as is the case in their example. However, in some
examples of synchronization problems, this is not the case S[Xn}:
and so their method would not work. We propose methods Yn
which will work in this situation by keeping iterates near to

a periodic point which is attracting in the normal direction. X : ;
variant subspace is one of the coordinate axes. Thus we
Vo

Yn
Xl

It is convenient to perform a change of variables so that the

Thus this natural attraction of the system is used to draw
iterates in close to the invariant subspace. efine

Ashwin, Buescu, and Stewdrt4,15 note that the prob- X 4y X Y

i : . g ntYn n—Yn

lem of the synchronization of identical systems is just one Xp= . Y= , 2
example of a very general situation in which the same issues 2 2
arise. The essential ingredients are a dynamical system Witgn
an invariant subspace. The stability of the chaotic motion in
t_he ir!variant s_ubspace with respect to transverse perturba- x_. . =1[f(x,+Yy,,p* +p,) + f(X,—Yn,p* +80,)],
tions is determined by normal Lyapunov exponents. Symme- (33
try provides a natural setting for such invariant subspaces
since fixed point subspaces are always invariant. Coupled Yni1=3[f(Xn+Yn,P* +8pn) — f(Xn—Yn,P* + 89,)]
identical oscillators have an invariant subspace correspond-
ing to the synchronized state. ~2CYn- (3b)

In Sec. Il we consider two goupled one—dimensiona! MapSrhe symmetry of these equations is defined by
and different methods for using parameter perturbations to
obtain synchronization are proposed. An example illustrates X
the methods. In Sec. Il the methods are extended to higher- 5[3,
dimensional systems and an example of coupled Duffing sys-
tems is used to illustrate the use of the methods. Finallyand the one-dimensional invariant subspace is defined by
applications for this approach are considered in Sec. IV. =0.

d Egs(1) become

X
-y

: 4

Il TWO-DIMENSIONAL SYSTEMS A. Methods for synchronization

) ] ) ] Since the attractor is stuck onto the invariant subspace,
~We consider two-dimensional systems of iterated mapgyjs implies that there are periodic points in the invariant
with a one-dimensional invariant subspace. One method o, pspace which are attracting in the normal direction and are
generating such problems is by coupling two one-iherefore saddles in the two-dimensional space. A first sim-
dimensional maps. The invariant subspace then correspongﬁstic approach to using parameter perturbations to synchro-
to the synchronized state. _ nize the coupled system essentially consists of using the Ott,
Consider the system of coupled maps given by Grebogi, and Yorke methofil7] for controlling chaos by

stabilizing a fixed or periodic point contained in the attractor.
Xne1=T(X,,p* +6pn) +c(Yo—X,), (1@  Thus a fixed point is found in the invariant subspace which is
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attracting in the normal direction. Once iterates come near t
this point, parameter perturbations are used to move iterate
onto the stable manifold and so they are attracted to th
invariant subspace. When it is considered that an iterate |
sufficiently close to the subspace, the parameter perturb:
tions can be turned off, allowing the iterates to wander cha
otically close to the invariant subspace. When the iterate
start to move away from the subspace but come close to tr
stable manifold of the fixed point, the parameter perturba
tions can again be activated. Since the attractor is stuck ont
its invariant subspace, this also means that the iterates ofte
come close to the subspace and this means that data near
the fixed point in the invariant subspace can be collectec
which enables the linearized dynamics required for the con-
trol method to be estimated.

Since the aim of the perturbations in this context is to
attract iterates to the invariant subspace rather than to the
fixed point, it seems reasonable to consider whether a pertur-
bation could be chosen with the aim of obtainipg, ;=0
rather than simply aiming for the stable manifold and letting
the iterates slowly drift in. However, if both systems are

FIG. 1. Using parameter perturbations to keepxhmordinate
fixed in the vicinity of the fixed point.

X—X* — N y(Xp—X*)
opn= W

Note that at the first iteratiors, =X but this will not hold

perturbed identically so thaip,= 4q,,, then the derivative
of the coupled syster(8) with respect todp,, evaluated at a
fixed point &*,p*) in the invariant subspace isv
=[fp(x*,p*),O]T. Now iterates move in the direction of the
vectorw when the parameter is perturbed and so this implie

that the iterates move parallel to the invariant subspace. Thus
it is not possible to place an iterate on the invariant subspace

directly in this case.

precisely for subsequent iterations since the parameter per-
turbation is determined from approximate linear dynamics
about the fixed point. Since the normal dynamics is indepen-
dent of the parameter perturbations, it is simply given by the

Second equation of Eg5). Thus

OYn+1=Ns0Yn

and so there is contraction in the variable towards the

Once the iterates have come close to the invariant sulpyariant subspace and the rate of contraction is determined
space, the intention is that they then continue chaoticallyy the stable eigenvalues. This process is continued until
close to the invariant subspace. However, since they havg, jterate is within a distanceof the invariant subspace for
been attracted to the stable manifold of a fixed point by th&ome smalle>0. The parameter perturbations are then
parameter perturbations, the iterates are likely to stay near @med off and the chaotic motion near to the invariant sub-
the fixed point initially. To speed up the escape from thegpace is resumeee Fig. 1
fixed point, a final parameter perturbation could be used t0" e have considered how perturbations can be used to
move the iterate away from the fixed point so that chaoticsynchronize coupled systems when the perturbations to both

motion is quickly restored.

systems are the same, i.6p,= 89, . If this condition does

An alternative approach is to start with an iterate which isyi hold. then the equations haie symmetry in their un-
close to the stable manifold of the fixed point in the 'nva”amperturbed statedp, = 6g,=0) but a perturbation withp,,

subspace and use parameter perturbations to fix the value

‘s"cfé‘qn corresponds to a symmetry breaking perturbation of

X. Since it is assumed that the initial iterate is close to thqhe equations. However, this can be advantageous since pa-

stable manifold, the iterates will again be attracted to th

ates away from the fixed point is not required since they will
not be very close to that fixed point.
The linearization of Eq(3) about a fixed point in the
invariant subspace has the form
w
EHES

where 8x,=X,—X*, 8Y,=V¥n, A\s and\, are the stable and

Ay O
0 As

Mn 1
OYn+1

OXn
Yn

(5

; ) i ) "NGameter perturbations in this case do not move the iterates
invariant subspace. However, a final kick to move the iter-

parallel to the invariant subspace. Thus it is now possible to
choose a perturbation to put an iterate on the invariant sub-
space, rather than waiting for the orbit to drift down the
stable manifold of a fixed point. Of course, an approximation
to the linear dynamics is still required and we obtain this in
the usual way in the neighborhood of a fixed point.

The equations in the transformed coordinates wifh,
#0 andéq,=0 are given by

Xn+1™= %[f(xn+yn rp* + 5pn)+f(xn_ynlp*)]y

unstable eigenvalues associated with the saddle fixed point,

andw=f,(x*,p*). Note that the matrix is diagonal due to

Yn+1™= %[f(xn+yn P* +6pn) — f(Xn—Yn,p*)]—2¢CYy,

the reflectional symmetry in the problem. Suppose that an

iterate ,,y,) = (X,y) comes close to the stable manifold of
the fixed point, that iske Ry=[x* — 8,x* + ] for some
small 5>0. If the aim is to havedx,,.,;=X—Xx* also, then
from the first equation of Eq(5), the required parameter
perturbation is given by

and linearizing these equations about a fixed poxit,Q)
with p=p* gives

|

Ay O
0 \s

1

5Xn+1
"3

OYn+1

OXn
OYn

W
W

}5pn.
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Now the dynamics in the transverse direction is given by 0.50 ; . .

OYn+1=NsOYnt %Wé\pn .

0.40 ]
To place an iterate on the invariant subspace, we require th.
SYn+1=Yn+1=0 and so the required perturbation is
0.30 | : ' .
Spn=— Zhs¥n y | ‘ .
n W . P ’ ) ‘
020 i y IR

If the value of|d&p,| is larger than the maximum allowed
perturbationdp,,.,, then some perturbations which move the
iterates onto the stable manifold of the fixed point can first be
performed until an iterate is close enough to be placed ont
the invariant subspace with a sufficiently small perturbation
One problem associated with both methods considered i
this section is that the time spent away from the neighbor
hood of the fixed point in which parameter perturbations car
be applied may be long, in which case synchronization may
be lost. The simple solution to this problem is to use a higher
period point in the invariant subspace which is attracting in
the normal direction. Then, once the iterates start to move,=—2 and\;=0.6788. We choose the box near to this
away from the invariant subspace, there will only be a shorfixed point to have§=0.05 and e=0.0001 so thatR;
interval until an iterate falls near to one of the periodic points=[0.7,0.§.
and then parameter perturbations can be applied to draw the The uncontrolled chaotic attractor is shown in Fig. 2. Us-

FIG. 2. Uncontrolled chaotic attractor.

orbit back towards the invariant subspace again. ing parameter perturbations in order to fix the valuexof
once an iterate falls in the control region to obtain synchro-
B. Example nization(see Fig. 1 gives the attractor shown in Fig. 3 which

. . , contains 10 000 iterations. Vertical lines can clearly be seen

_The form of coupled _one-d|mens_|0nal maps 1s rather r_eWhenxne [0.7,0.§ arising from the control mechanism. Not
strictive and.so we cons!der a two-dlmensmngl system Which| the iterates are shown in this figure but the largest value

has_a one-dlmensm_)nal invariant _subspace givey Y. In of y, is 0.0162 which is small when compared with the un-
particular, we consider the equations controlled attractor. The maximum parameter perturbation
required is 0.0647 so small perturbations are sufficient to

achieve synchronization. If the iteration is left to run for
2 5 3 longer time periods, then occasionally synchronization is lost
Yn+1=Yn(Col™ Y+ C1Xn+ CoXp+ CaXyy), (6)  for short periods. However, we have constructed this ex-
ample to work by using a fixed point of the map. Using a

higher period orbit would give a method for which synchro-

Xnt1=4X[1— (14 p)X,]+y3(2.83— 2.8, +0.5),

where
Cy=0.9557, ¢;=6.277, c,=—16.246, c3;=9.846.

The nominal value op is chosen to b@* =0 and the itera-

tion in the invariant subspace is then given by 0.010 ' ' ' '
Xp+1=Fo(Xp) =4Xn(1—Xp),
0.008 + i
for which the invariant density on the intervbi=[0,1] is
given by
0.006 | .

1 y

mX(1=X) 0.004 | :

The normal Lyapunov exponent is then

v(X)=

0.002 g

1
0'=J IN(Co+ CqXn+ Cox3+ Cax3) (x)dx=0.017 06,
0

0.2 0.4 0.6 0.8 1.0

and since it is positive, the chaotic motion in the invariant
subspace is unstable with respect to almost all normal pel
turbations. There is a fixed point &, at x=0.75 and the

eigenvalues of the linearization of Eq$) at this point are FIG. 3. Synchronized attractor.
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nization could be achieved for very long times. Better syn- A. Perturbing both systems simultaneously

chronization can also be obtained by decreaging We begin by settingg,= dp,,, so that both systems are

perturbed in an identical manner. The linearization of @B9.

1. HIGHER-DIMENSIONAL SYSTEMS about the fixed point in the synchronous subspace then has
the form
In order to extend the synchronization methods for use on
a generaN-dimensional problem, we consider synchroniza- i1 Ms 0 |[ox, w
tion in four-dimensional systems. The extension to higher Sy, = sy + 6pn ol 9
n+1 0 M N n

dimensions should then be apparent. In particular, we con-
sider the coupling of a pair of two-dimensional maps and

; herew=f,(x*,p*). Againw lies parallel to the synchro-
extend the theory of Sec. Il to this case. We then apply thes& p .
methods to the coupling of a pair of Duffing oscillators by Poust sbu_lk_Js_pact?] a?d ZO th_etOtt, Grleb(t))gl, anlql Z(-)f”:)e t?it]h()d
working with the Poincarenap. or stabilizing the fixed point can only be applied if bo e

Consider a pair of coupled two-dimensional iterated mapggenvalues of the matnk/I'N are less than one in modulus
since parameter perturbations have no effect on the normal
dynamics. This implies that the fixed point must have a
:[f(xn pr 5pn)} B{Xn} @ three-dimensional stable manifold and a one-dimensional un-
f(Yn,p* +6qn) Yol stable manifold. Parameter perturbations can then be used to
place iterates on the three-dimensional stable manifold in
wheref:R2x R—R? andB is a 4x 4 matrix which describes Which case they will be attracted to the fixed point in the
the linear coupling. The matriB can be expressed in the synchronous subspace. Once the fixed point has been stabi-
form B=C®D whereC andD are 2x 2 matrices. The ma- lized, an additional perturbation can be applied to quickly
trix D describes the coupling arrangement between differerftestore synchronous chaotic behavior.
components of the two systems while describes the cou- This method is rather restrictive in that a fixed or periodic
p||ng Connections and the strength of the Coup“m. We point Wlth a three'dimensional Stable manif0|d iS necessary
assume that there is two-way coupling between the two sydh order to apply control. Such points may be uncommon or

Xn+1
Yni1

tems and so we can write may not even exist for a particular system.
-Cc ¢ dy; dpp B. Perturbing one system
c= c —cf - dy; dyyl Suppose that perturbations are made only to one system
so thatéq,=0. In this case, the derivative vector with re-
Using the transformation of variables spect todp,, is no longer parallel to the synchronous sub-
space and is given by
X :Xn+Yn :Xn_Yn 1w
n 2 1 yn 2 E w .
in Eq. (7) yields the system The restriction of requiring the fixed point to have a three-
dimensional stable manifold can now be lifted. Suppose that
Xav1| 1 [ f(Xa+Yn,p* +0pn) + (X = Yn,p* + 60n) My has eiggnvaluels’g' and_)\l’]' wh_ere|>\2'|<1<|)\h‘|. sothat
Voi1l 2 | F(XatYn,P* + 8p5) = f(Xa—Yn ,p* + 8G1,) the fixed point has a two-dimensional stable manifold. A pair
of parameter perturbations could then be used to place an

Xn iterate onto the two-dimensional stable manifold of the fixed

}' ) point. Alternatively, a pair of parameter perturbations could
be applied to place an iterate onto the synchronous subspace

when this is possible. Iterating the normal component of the

where . o ) ;
linearization twice gives

0 0
} Yns2=MZSynt IMaWOPt 2WoPs1. (10

B'=C'®D, C [ 0 —2¢
We assume that is not an eigenvector d¥l so thatM \w

We now consider different methods of perturbing the pa-and w are linearly independent vectors. Lit and f, be
rameters in Eq(8) which result in approximately synchro- vectors orthogonal tav andM yw, respectively. To place an
nous behavior. The two-dimensional synchronous subspadterate onto the synchronous subspace we require that
is defined byy,=0. For all the methods we consider we &y, ,=0 which is equivalent to requiring thd{ 8y, ,=0
assume that a fixed poink{,p*) exists within the synchro- andfgéymzzo_ Thus from Eq(10) we obtain
nous subspace which is a saddle when restricted to this sub-
space. The methods can of course be generalized to deal with 2fTM26y,
periodic points but we consider only fixed points for the sake pp=— —— "
of clarity. fiMyw
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2fIM2 8y, X1—Yq X2—Y>

5Pn+1=—f;—w- Yim—H— Yom T

These perturbations can be applied as soon|@s|  ang takek as the control parameter in each system so that
< SPmax and [P+ 1| < Spmax- Parameter perturbations can

then be turned off until the iterates return to a neighborhood
of the fixed point at some later time.

An alternative to using two successive perturbations of a
single parameter to counteract the effects of the twoThe equations then become
dimensional unstable manifold is to use two parameters. If
the parameters are p! and p? with w; X1 =X,
=fpi(x*,(p1)*,(p2)*), i=1,2, then the normal linearized ’
map around the fixed point is

8Yn+1=MndYn+ 3wy Sph+ 3w, 5p2. (12)

K1:K+5K1, K2:K+5K2

Xo= = KXo 3 K1 (Xo+Y5) = 3 0K p(Xo—Y2) = (X3 +3X1y5)

+X;+A coswt,
Let g; and g, be vectors satisfying;iijzo if i#]. Then

from Eq.(11), we obtain the parameter perturbations Vi=Ys,
1_ ZQIM Néyn . 1 1 3 2
opn=— gw, Y2= —Kyz— 30Ky (X +Y2) + 2 0Ka(X2—Y2) — (Y1 +3X1y1)
T +y1—2cy;.
Sp2=— 29, M 6Yn
" 9£W2 ' Note that the coupling only appears in the last equation and

. . the forcing term only in the second equation. Sampling the
which can be used to place an iterate onto the synchronougytions of these equations once per period of the forcing

subspace provided thasp;| < pjay. i=1,2. then gives rise to a four-dimensional Poincanap. When
o0K,=6K,=0, the equations have a reflectional symmetry
C. Example and a two-dimensional synchronous subspace defined by

We now apply the methods discussed in the precedingzyfo' Thus the linearization of the Poincameap at a

section to the four-dimensional Poincarep derived from Ixed point in the subspace will have the same structure as in

. . . P Eq. (9) when 6K ;= 6K,.
two coupled Duffing equations. Duffing’s equation is given 1 2
P ged gsed g Since the map is not known in closed form, the calcula-

b . ) .
y tion of M, w, andx* must be done using regression. In order
d2x dx . to obtain reliable results, one has to carry out this regression
a2 K ar X*=X=A coswt, procedure with some care. The two blodkg andM  of the

linearization can be calculated separately. Cletlycan be
and sampling the solution of this equation once per period of@lculated by finding the linearization around the fixed point
the forcing term gives a two-dimensional Poincanap. If N the invariant subspace. The value of the fixed point can
we have a simple linear coupling of two such oscillators with@So be found from the regression. By collecting data near to

the coupling defined by the fixed point from the attractor in the whole space, the
matrix My can be found using regression by considering
—-c ¢ 0O 0 only the normal variableg,; andy, since the linearized dy-
C= ¢ —cl D= 0 1}, namics decouples. It is not necessary to estimate the value of

the fixed point in the normal variables since it is known that
it occurs aty, =y,=0. The two-dimensional vectav can be
determined by considering the effect of a perturbation in the
X, =X parameter on the dynamics in the invariant subspace. The
1 2 . .
full four-dimensional vector can then be constructed from

this, depending on the particular type of parameter perturba-
tions which are employetsee[19] for more details

We take parameter values for the coupled Duffing oscil-

then we obtain the first order system

Xy= — K1 Xo— X3+ X, +A coswt+c(Yo—Xy),

Yi=Y3, lators ofK =0.1, A= 3.0, andw= 0.2. Synchronization of the
. coupled oscillators occurs when-0.715. Wherc=0.715, a
Y,= —K2Y2—Yf+Y1+A coswt+c(X,—Y,). blowout bifurcation occurs and the dynamics are no longer
confined to the synchronous subspace for smaller values of
We define the change of variables c.
A projection of the Poincarsection wherey; is plotted
_XatY _ Xt Yy againstx, is shown in Fig. 4. A saddle fixed point is located

1= X*2=75 at (Xq,%,,Y1,Y,) =(1.401,1.668,0.0,0.0) and at that point
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075 ; . 04 . , ‘ .
0.50 + , i
Y1 yn
i . 02 i
0.25 | _
0.00 - 7 0.0 * 7 4
025+ -
-0.2 r 1
~0.50 | .
-0.75 L 1 L 04 I 1 1 |
0.50 X . . )
100 150 200 250 0 1000 2000 3000 4000 5000
x 1 n
FIG. 4. Poincaresection of the coupled Duffing system with o )
K=0.1,A=3.0, »=0.2, andc=0.68. FIG. 5. A projection of the transverse dynamics under control.

ues ofK=0.5,A=2.5,w=2.6, andc=0.13. A projection of

the Poincaresection in this case is shown in Fig. 6. For these
parameter values, no low order periodic points lying within
the synchronous subspace with a three-dimensional stable
—21.753 manifold could be found. Thus the method of the simulta-

Msz

—5.250 3.94 -1.379 —0.31
—3.014 2.244 N“l1.856 0.386 |’

W=l _18.74 neous perturbation of both systems cannot be implemented

on this system. A period 2 point was located at
The eigenvalues d¥l g are —2.967 and—0.039 while those  (x;,x,,y;,Y,)=(0.174-0.052,0,0) and at that point, the
of My are —0.939 and—0.054. Thus the fixed point has a linearization of the twice iterated map gives
three-dimensional stable manifold and this permits the use of
the Ott, Grebogi, and Yorke method to stabilize the fixed
point in order to induce synchronous behavior. Convergence Ms=
of the controlled iterations will be governed by the largest of
the stable eigenvaludm absolute valupand hence will be
quite slow. Parameter perturbations are activated when iter- M=
ates fall within a distance of 0.1 of the fixed point. With a
randomly chosen initial condition, a short transient is Seefrhea eigenvalues dfl s are —0.041 and—2.308 while those
befo_re the §ystem is proughfc unde_r control. Perttérbations argy My are —0.017 and— 1.549. Since the two stable eigen-
applied until iterates lie within a distance okILO ® of the 51 e5 are small, convergence to the fixed point will occur

fixed point and then turned'off, with the_exceptpn of a ran'relatively rapidly under control. Again, perturbations are ac-
domly chosen chaos restoring perturbation. The iterates then

wander chaotically close to the synchronous subspace for a

—1.013 —-1.52
—0.826 —1.336

~0.823 —0.93 [1.56j
—0.627 —-0743" VT|1.738

while before they begin to wander away from the vicinity of 0.20 .
the synchronous subspace. Control is then reapplied when

iterates fall close to the fixed point to maintain the dynamics ¥,

close to that subspace. However, chaotic behavior can be 0.10 +

suppressed for quite some time while control is reapplied due
to the slow convergence of the method. Figure 5 shows a
projection of the dynamics in the transverse direction. The 0.00 L
dynamics remain close to the synchronous subspace for over
4000 iterations of the Poincaraap, although much of this

time is spent near to the fixed point during the control pro- 010}
cess.
Fixed points with a three-dimensional stable manifold
prove difficult to find within the coupled Duffing system and 020 . ‘ . ‘ .
then, as in the above example, convergence of the control 000 0.10 020 030 040 050 0.60
iteration is often very slow. Thus this method is of little X1

practical use. Saddles with two stable directions are far more
numerous, thus suggesting that the perturbation of one sys- FIG. 6. Poincaresection of the coupled Duffing system with
tem would be more preferable. We now take parameter valk=0.5,A=2.5, »=2.6, andc=0.13.
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0.10 ; ‘ IV. APPLICATIONS

The coupled systems which we have considered all have a
reflectional symmetry which derives from the two-way cou-
pling. However, the methods could easily be adapted to deal
with one-way coupling, in which case there is still an invari-
0.00 - ant subspace corresponding to the synchronized state but
there is no longer any symmetry in the system. Using one-
way coupling and adjusting a parameter in only one of the
005 k 4 systems, this method could be used in the context of secure
communication. There are various ways in which synchroni-
zation of chaotic systems can be used in this dse®, for

‘ \ example, the review of Ogorzal¢kQ]). One such method is
2000 4000 6000 to send two chaotic signals which correspond to either a zero
n or a one in a binary encoded message. The received signal
can be fed into two different systems each of which will
FIG. 7. A projection of the transverse dynamics under control. synchronize with only one of the two possible transmitted
signals in order to determine which signal was sent. One
tivated when iterates are within a distance of 0.1 of the pepossible drawback of this method is that the transient time
riod 2 point. A pair of perturbations are applied to the systembefore synchronization could be long so that sufficient time
when an iterate is within a distance of 0.01 of a period 2must be allowed for synchronization to occur.
point in order to place the iterate in the invariant subspace, A simple alternative to this method is to send two signals
thereby restoring chaotic behavior. Since iterates will nevewhich do not naturally synchronize but can be made to syn-
be placed precisely within the subspace, the state of the syshronize by the use of parameter perturbations in the receiv-
tem will move away from synchronous behavior and when iting system. Thus the two signals which are sent are chosen
does so, parameter perturbations are applied at the earliesd that they will synchronize with parameter perturbations
opportunity in order to retain synchronous behavior. In Fig. 7when coupled with the identical oscillator but with the prop-
the transverse dynamics is shown when parameter perturbarty that parameter perturbations applied in the other case
tions are activated and the system brought to synchronousave the effect of moving iteratesvay from the invariant
behavior. Thereafter, perturbations are applied when the dysubspace. If a fixed or periodic point is chosen whose neigh-
namics begin to stray from the vicinity of the synchronousborhood is visited frequently by the chaotic motion and for
subspace and iterates fall within the vicinity of the period 2which there is strong contraction towards the invariant sub-
orbit suitable for control. As can be seen from Fig. 7, veryspace, then the transient time before synchronization can be
effective synchronization is possible using parameter pertursignificantly reduced, thus enabling a faster transmission of
bations. the signal.
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