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Synchronization of coupled systems via parameter perturbations

P. J. Aston and C. M. Bird
Department of Mathematical and Computing Sciences, University of Surrey, Guildford GU2 5XH, United Kingdom

~Received 11 August 1997!

We consider coupled identical chaotic systems. In some circumstances, the coupled systems synchronize.
When this does not happen naturally, we derive methods based on small parameter perturbations which result
in synchronous behavior. The perturbations are applied in the neighborhood of a fixed or periodic point in the
synchronous subspace which is stable in the normal direction. By keeping iterates in the neighborhood of such
points using parameter perturbations, they are naturally drawn closer to the subspace by the stable manifold of
the fixed or periodic points. Different ways of varying the parameters are also considered. Methods for
two-dimensional systems are first explored and then extended to higher-dimensional systems. Examples are
presented to illustrate the methods.@S1063-651X~98!03903-8#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The synchronization of chaotic systems, along with
control of chaos, has been a popular focus for recent
search. The problem consists of the synchronization of
or more identical coupled chaotic oscillators such that th
both exhibit identical chaotic behavior. At first sight th
seems an impossible task because of the fundamental p
erty of chaotic systems of sensitive dependence upon in
conditions. Indeed, Tang, Mees, and Chua@1# postulate that
chaotic systems defy synchronization. If we were to obse
the dynamics of two identical, uncoupled chaotic oscillato
each given almost identical initial conditions, eventually w
would see their trajectories diverge from a synchronous~or
at least, near synchronous! state to an asynchronous state.
is, of course, impossible to construct two identical chao
oscillators in the first place, and so the problem is co
pounded in that we wish to ‘‘synchronize’’ two or more a
most identical systems.

Much of the interest in this area was initiated by Pec
and Carroll @2#, who demonstrated that, under certain c
cumstances, it is possible to synchronize the behavior of
chaotic systems by linking them with a common signal
signals. Provided that these signals are appropriately cho
synchronization of the systems will occur spontaneously
the time development of the coupled system progresses.
mada and Fujisaka@3# use a simple coupling technique
order to achieve synchronization of two independent osc
tors. The strength of the coupling signal must be abov
certain threshold for synchronization to occur naturally.

The synchronization of chaotic oscillators has a num
of applications. Hayes, Grebogi, and Ott@4# looked at trans-
mitting data securely by using a pair of coupled oscillato
Kocarev and Stojanovski@5# have also investigated the ap
plication of chaotic synchronization to secure communi
tions. Roy and Thornburg@6# have looked at the experimen
tal synchronization of chaotic lasers. Further recent work
this area can be found in the papers of Yu, Kwak, and L
@7,8# and Cuomo, Oppenheim, and Strogatz@9#. For an ex-
cellent summary of some of the earlier work on synchro
zation, see Ogorzalek@10#.

The problem we consider is that of obtaining synchro
571063-651X/98/57~3!/2787~8!/$15.00
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zation in low-dimensional systems when it would not na
rally occur via the application of small parameter perturb
tions based on only a linear approximation to the map in
neighborhood of a fixed or periodic point. This approach
similar to the method for controlling chaos which was pr
posed by Ott, Grebogi, and Yorke@17# which involves sta-
bilizing a fixed or periodic point contained in the attract
via small parameter perturbations. In this case, a fixed
periodic point in the synchronous subspace is used and
rameter perturbations are employed to draw iterates clos
this point. However, once this has been achieved, the con
is turned off so that chaotic motion close to the invaria
subspace is restored. In some cases, depending on
method of parameter perturbation, it is also possible to
perturbations to place an iterate~approximately! on the in-
variant subspace itself.

Lai and Grebogi@11,12# proposed a method for synchro
nizing two identical systems via parameter perturbatio
However, in their case, there was no coupling between
two systems~other than that induced by the parameter p
turbations!. One system was allowed to iterate chaotica
while parameter perturbations were then applied to the s
ond system in order to keep it in step, or synchronized, w
the first. The parameter perturbations were derived from
linearization about a chaotic ‘‘target’’ trajectory of the fir
system. This requires an approximation to the linearizat
of the system over the whole of the attractor. Once this
been obtained, the parameter perturbations can be d
mined at each iteration by requiring that the next iterate
moved onto the stable direction at that point. This appro
has the significant disadvantage that it requires a la
amount of global knowledge of the system. In particular,
linearization of the system is required over the whole of
attractor. Also parameter perturbations must be continu
applied in order to maintain the synchronization. Using o
approach in which there is a natural coupling between
systems but synchronization does not naturally occur, on
local approximation to the dynamics near to a periodic po
is required which is much easier and cheaper to determ
Moreover parameter perturbations are only applied when
difference between the two systems grows too large
while this difference is small, parameter perturbations are
2787 © 1998 The American Physical Society
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2788 57P. J. ASTON AND C. M. BIRD
required so that the system behaves in its normal, un
turbed state.

Another approach for synchronizing coupled systems
ing parameter perturbations has been proposed by Na
Hua, and Lai@13#. Their method consists of making param
eter perturbations at every iteration. The criterion for det
mining the perturbations is that one component of the nor
variables should be zero at the next iteration. It is also
portant with this method that the parameter chosen for p
turbations has an effect on the normal variables and not
on those in the invariant subspace. Their method is ill
trated with a two-dimensional map which has a on
dimensional invariant subspace. It is significant, howev
that this map is not associated with a synchronization pr
lem. There are a number of drawbacks with this approa
The first is that it requires that the map be known althou
an alternativead hocmethod is also suggested which do
not require the map to be known. This is again because
bal information is required as perturbations are made at
ery iteration. Since our method is essentially local, with p
turbations only being made when iterates are close t
periodic point, the map does not need to be known sinc
local approximation near to the periodic points can easily
obtained. The requirement that the parameter perturbs
normal variables implies that it will also perturb the invaria
subspace, as is the case in their example. However, in s
examples of synchronization problems, this is not the c
and so their method would not work. We propose meth
which will work in this situation by keeping iterates near
a periodic point which is attracting in the normal directio
Thus this natural attraction of the system is used to d
iterates in close to the invariant subspace.

Ashwin, Buescu, and Stewart@14,15# note that the prob-
lem of the synchronization of identical systems is just o
example of a very general situation in which the same iss
arise. The essential ingredients are a dynamical system
an invariant subspace. The stability of the chaotic motion
the invariant subspace with respect to transverse pertu
tions is determined by normal Lyapunov exponents. Symm
try provides a natural setting for such invariant subspa
since fixed point subspaces are always invariant. Coup
identical oscillators have an invariant subspace correspo
ing to the synchronized state.

In Sec. II we consider two coupled one-dimensional ma
and different methods for using parameter perturbations
obtain synchronization are proposed. An example illustra
the methods. In Sec. III the methods are extended to hig
dimensional systems and an example of coupled Duffing
tems is used to illustrate the use of the methods. Fina
applications for this approach are considered in Sec. IV.

II. TWO-DIMENSIONAL SYSTEMS

We consider two-dimensional systems of iterated m
with a one-dimensional invariant subspace. One method
generating such problems is by coupling two on
dimensional maps. The invariant subspace then corresp
to the synchronized state.

Consider the system of coupled maps given by

Xn115 f ~Xn ,p* 1dpn!1c~Yn2Xn!, ~1a!
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Yn115 f ~Yn ,p* 1dqn!1c~Xn2Yn!, ~1b!

wheref : R3R→R andcPR is the coupling parameter. W
assume that perturbations can be made independently in
of the two systems and so there are two perturbation par
etersdpn anddqn . We suppose that whendpn5dqn50, the
dynamics in the invariant subspace defined byX5Y is cha-
otic with a positive normal Lyapunov exponent so that t
basin of attraction of this synchronized state in the wh
space has measure zero@14#. We also assume that the dy
namics of the coupled system is chaotic in the whole sp
and that the attractor is ‘‘stuck on’’ to the invariant subspa
so that the iterates spend a long time close to the invar
subspace@16#. Our aim is to use the parameter perturbatio
dpn anddqn to synchronize the coupled system. In practic
this means keeping the iterates very close to the invar
subspace for long time periods. The methods that we use
essentially ‘‘local’’ methods in that they require informatio
only in a small neighborhood of a fixed or periodic poi
which is contained in the invariant subspace. This is in c
trast to the methods of Lai and Grebogi@11,12# and Nagai,
Hua, and Lai@13# where global information about the attra
tor is required.

When dpn5dqn , Eqs. ~1! have aZ2 symmetry defined
by

SFXn

Yn
G5FYn

Xn
G .

It is convenient to perform a change of variables so that
invariant subspace is one of the coordinate axes. Thus
define

xn5
Xn1Yn

2
, yn5

Xn2Yn

2
, ~2!

and Eqs.~1! become

xn115 1
2 @ f ~xn1yn ,p* 1dpn!1 f ~xn2yn ,p* 1dqn!#,

~3a!

yn115 1
2 @ f ~xn1yn ,p* 1dpn!2 f ~xn2yn ,p* 1dqn!#

22cyn . ~3b!

The symmetry of these equations is defined by

SFxyG5F x
2yG , ~4!

and the one-dimensional invariant subspace is defined by
50.

A. Methods for synchronization

Since the attractor is stuck onto the invariant subspa
this implies that there are periodic points in the invaria
subspace which are attracting in the normal direction and
therefore saddles in the two-dimensional space. A first s
plistic approach to using parameter perturbations to sync
nize the coupled system essentially consists of using the
Grebogi, and Yorke method@17# for controlling chaos by
stabilizing a fixed or periodic point contained in the attract
Thus a fixed point is found in the invariant subspace which



r
at
th
e
rb
ha
te
t

ba
on
ft
a
te
on

to
t

rtu

ng
re

e
lie
h
a

u
al
a
th
r
h

ti

i
n
e

th
th
er
i

oi
o
a

of

r

er-
s
n-
e

ed

n
b-

to
oth

of
pa-
tes
to
b-

e
n
n

57 2789SYNCHRONIZATION OF COUPLED SYSTEMS VIA . . .
attracting in the normal direction. Once iterates come nea
this point, parameter perturbations are used to move iter
onto the stable manifold and so they are attracted to
invariant subspace. When it is considered that an iterat
sufficiently close to the subspace, the parameter pertu
tions can be turned off, allowing the iterates to wander c
otically close to the invariant subspace. When the itera
start to move away from the subspace but come close to
stable manifold of the fixed point, the parameter pertur
tions can again be activated. Since the attractor is stuck
its invariant subspace, this also means that the iterates o
come close to the subspace and this means that data ne
the fixed point in the invariant subspace can be collec
which enables the linearized dynamics required for the c
trol method to be estimated.

Since the aim of the perturbations in this context is
attract iterates to the invariant subspace rather than to
fixed point, it seems reasonable to consider whether a pe
bation could be chosen with the aim of obtainingyn1150
rather than simply aiming for the stable manifold and letti
the iterates slowly drift in. However, if both systems a
perturbed identically so thatdpn5dqn , then the derivative
of the coupled system~3! with respect todpn evaluated at a
fixed point (x* ,p* ) in the invariant subspace isw
5@ f p(x* ,p* ),0#T. Now iterates move in the direction of th
vectorw when the parameter is perturbed and so this imp
that the iterates move parallel to the invariant subspace. T
it is not possible to place an iterate on the invariant subsp
directly in this case.

Once the iterates have come close to the invariant s
space, the intention is that they then continue chaotic
close to the invariant subspace. However, since they h
been attracted to the stable manifold of a fixed point by
parameter perturbations, the iterates are likely to stay nea
the fixed point initially. To speed up the escape from t
fixed point, a final parameter perturbation could be used
move the iterate away from the fixed point so that chao
motion is quickly restored.

An alternative approach is to start with an iterate which
close to the stable manifold of the fixed point in the invaria
subspace and use parameter perturbations to fix the valu
x. Since it is assumed that the initial iterate is close to
stable manifold, the iterates will again be attracted to
invariant subspace. However, a final kick to move the it
ates away from the fixed point is not required since they w
not be very close to that fixed point.

The linearization of Eq.~3! about a fixed point in the
invariant subspace has the form

Fdxn11

dyn11
G5Flu 0

0 ls
G Fdxn

dyn
G1Fw0 Gdpn , ~5!

wheredxn5xn2x* , dyn5yn , ls andlu are the stable and
unstable eigenvalues associated with the saddle fixed p
andw5 f p(x* ,p* ). Note that the matrix is diagonal due t
the reflectional symmetry in the problem. Suppose that
iterate (xn ,yn)5( x̂,ŷ) comes close to the stable manifold
the fixed point, that isx̂PRd5@x* 2d,x* 1d# for some
small d.0. If the aim is to havedxn115 x̂2x* also, then
from the first equation of Eq.~5!, the required paramete
perturbation is given by
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dpn5
x̂2x* 2lu~xn2x* !

w
.

Note that at the first iteration,xn5 x̂ but this will not hold
precisely for subsequent iterations since the parameter p
turbation is determined from approximate linear dynamic
about the fixed point. Since the normal dynamics is indepe
dent of the parameter perturbations, it is simply given by th
second equation of Eq.~5!. Thus

dyn115lsdyn

and so there is contraction in they variable towards the
invariant subspace and the rate of contraction is determin
by the stable eigenvaluels . This process is continued until
an iterate is within a distancee of the invariant subspace for
some smalle.0. The parameter perturbations are the
turned off and the chaotic motion near to the invariant su
space is resumed~see Fig. 1!.

We have considered how perturbations can be used
synchronize coupled systems when the perturbations to b
systems are the same, i.e.,dpn5dqn . If this condition does
not hold, then the equations haveZ2 symmetry in their un-
perturbed state (dpn5dqn50) but a perturbation withdpn
Þdqn corresponds to a symmetry breaking perturbation
the equations. However, this can be advantageous since
rameter perturbations in this case do not move the itera
parallel to the invariant subspace. Thus it is now possible
choose a perturbation to put an iterate on the invariant su
space, rather than waiting for the orbit to drift down th
stable manifold of a fixed point. Of course, an approximatio
to the linear dynamics is still required and we obtain this i
the usual way in the neighborhood of a fixed point.

The equations in the transformed coordinates withdpn
Þ0 anddqn50 are given by

xn115 1
2 @ f ~xn1yn ,p* 1dpn!1 f ~xn2yn ,p* !#,

yn115 1
2 @ f ~xn1yn ,p* 1dpn!2 f ~xn2yn ,p* !#22cyn

and linearizing these equations about a fixed point (x* ,0)
with p5p* gives

Fdxn11

dyn11
G5Flu 0

0 ls
G Fdxn

dyn
G1 1

2 FwwGdpn .

FIG. 1. Using parameter perturbations to keep thex coordinate
fixed in the vicinity of the fixed point.
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2790 57P. J. ASTON AND C. M. BIRD
Now the dynamics in the transverse direction is given by

dyn115lsdyn1 1
2 wdpn .

To place an iterate on the invariant subspace, we require
dyn115yn1150 and so the required perturbation is

dpn52
2lsdyn

w
.

If the value of udpnu is larger than the maximum allowe
perturbationdpmax, then some perturbations which move t
iterates onto the stable manifold of the fixed point can first
performed until an iterate is close enough to be placed o
the invariant subspace with a sufficiently small perturbati

One problem associated with both methods considere
this section is that the time spent away from the neighb
hood of the fixed point in which parameter perturbations c
be applied may be long, in which case synchronization m
be lost. The simple solution to this problem is to use a hig
period point in the invariant subspace which is attracting
the normal direction. Then, once the iterates start to m
away from the invariant subspace, there will only be a sh
interval until an iterate falls near to one of the periodic poi
and then parameter perturbations can be applied to draw
orbit back towards the invariant subspace again.

B. Example

The form of coupled one-dimensional maps is rather
strictive and so we consider a two-dimensional system wh
has a one-dimensional invariant subspace given byy50. In
particular, we consider the equations

xn1154xn@12~11p!xn#1yn
2~2.8xn

222.8xn10.5!,

yn115yn~c0e2yn
2
1c1xn1c2xn

21c3xn
3!, ~6!

where

c050.9557, c156.277, c25216.246, c359.846.

The nominal value ofp is chosen to bep* 50 and the itera-
tion in the invariant subspace is then given by

xn115F0~xn!54xn~12xn!,

for which the invariant density on the intervalI 5@0,1# is
given by

n~x!5
1

pAx~12x!
.

The normal Lyapunov exponent is then

s5E
0

1

ln~c01c1xn1c2xn
21c3xn

3!n~x!dx50.017 06,

and since it is positive, the chaotic motion in the invaria
subspace is unstable with respect to almost all normal
turbations. There is a fixed point ofF0 at x50.75 and the
eigenvalues of the linearization of Eqs.~6! at this point are
at

e
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lu522 and ls50.6788. We choose the box near to this
fixed point to haved50.05 and e50.0001 so thatRd
5@0.7,0.8#.

The uncontrolled chaotic attractor is shown in Fig. 2. Us-
ing parameter perturbations in order to fix the value ofx
once an iterate falls in the control region to obtain synchro-
nization~see Fig. 1! gives the attractor shown in Fig. 3 which
contains 10 000 iterations. Vertical lines can clearly be seen
whenxnP@0.7,0.8# arising from the control mechanism. Not
all the iterates are shown in this figure but the largest value
of yn is 0.0162 which is small when compared with the un-
controlled attractor. The maximum parameter perturbation
required is 0.0647 so small perturbations are sufficient to
achieve synchronization. If the iteration is left to run for
longer time periods, then occasionally synchronization is los
for short periods. However, we have constructed this ex-
ample to work by using a fixed point of the map. Using a
higher period orbit would give a method for which synchro-

FIG. 2. Uncontrolled chaotic attractor.

FIG. 3. Synchronized attractor.
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57 2791SYNCHRONIZATION OF COUPLED SYSTEMS VIA . . .
nization could be achieved for very long times. Better sy
chronization can also be obtained by decreasinge.

III. HIGHER-DIMENSIONAL SYSTEMS

In order to extend the synchronization methods for use
a generalN-dimensional problem, we consider synchroniz
tion in four-dimensional systems. The extension to hig
dimensions should then be apparent. In particular, we c
sider the coupling of a pair of two-dimensional maps a
extend the theory of Sec. II to this case. We then apply th
methods to the coupling of a pair of Duffing oscillators
working with the Poincare´ map.

Consider a pair of coupled two-dimensional iterated m

FXn11

Yn11
G5F f~Xn ,p* 1dpn!

f~Yn ,p* 1dqn!G1BFXn

Yn
G , ~7!

wheref :R23R→R2 andB is a 434 matrix which describes
the linear coupling. The matrixB can be expressed in th
form B5C^ D whereC andD are 232 matrices. The ma-
trix D describes the coupling arrangement between diffe
components of the two systems whileC describes the cou
pling connections and the strength of the couplings@18#. We
assume that there is two-way coupling between the two
tems and so we can write

C5F2c c

c 2cG , D5Fd11 d12

d21 d22
G .

Using the transformation of variables

xn5
Xn1Yn

2
, yn5

Xn2Yn

2

in Eq. ~7! yields the system

Fxn11

yn11
G5 1

2 F f~xn1yn ,p* 1dpn!1f~xn2yn ,p* 1dqn!

f~xn1yn ,p* 1dpn!2f~xn2yn ,p* 1dqn!G
1B8Fxn

yn
G , ~8!

where

B85C8^ D, C85F0 0

0 22cG .
We now consider different methods of perturbing the p

rameters in Eq.~8! which result in approximately synchro
nous behavior. The two-dimensional synchronous subsp
is defined byyn50. For all the methods we consider w
assume that a fixed point (x* ,p* ) exists within the synchro-
nous subspace which is a saddle when restricted to this
space. The methods can of course be generalized to deal
periodic points but we consider only fixed points for the sa
of clarity.
-

n
-
r
n-
d
se

s

nt

s-

-

ce

b-
ith
e

A. Perturbing both systems simultaneously

We begin by settingdqn5dpn , so that both systems ar
perturbed in an identical manner. The linearization of Eq.~8!
about the fixed point in the synchronous subspace then
the form

Fdxn11

dyn11
G5FMS 0

0 MN
G Fdxn

dyn
G1dpnFw0G , ~9!

wherew5fp(x* ,p* ). Again w lies parallel to the synchro
nous subspace and so the Ott, Grebogi, and Yorke me
for stabilizing the fixed point can only be applied if both th
eigenvalues of the matrixMN are less than one in modulu
since parameter perturbations have no effect on the nor
dynamics. This implies that the fixed point must have
three-dimensional stable manifold and a one-dimensional
stable manifold. Parameter perturbations can then be use
place iterates on the three-dimensional stable manifold
which case they will be attracted to the fixed point in t
synchronous subspace. Once the fixed point has been s
lized, an additional perturbation can be applied to quic
restore synchronous chaotic behavior.

This method is rather restrictive in that a fixed or period
point with a three-dimensional stable manifold is necess
in order to apply control. Such points may be uncommon
may not even exist for a particular system.

B. Perturbing one system

Suppose that perturbations are made only to one sys
so thatdqn50. In this case, the derivative vector with re
spect todpn is no longer parallel to the synchronous su
space and is given by

1

2 FwwG .
The restriction of requiring the fixed point to have a thre
dimensional stable manifold can now be lifted. Suppose t
MN has eigenvaluesls

N andlu
N whereuls

Nu,1,ulu
Nu so that

the fixed point has a two-dimensional stable manifold. A p
of parameter perturbations could then be used to place
iterate onto the two-dimensional stable manifold of the fix
point. Alternatively, a pair of parameter perturbations cou
be applied to place an iterate onto the synchronous subs
when this is possible. Iterating the normal component of
linearization twice gives

dyn125MN
2 dyn1 1

2 MNwdpn1 1
2 wdpn11 . ~10!

We assume thatw is not an eigenvector ofMN so thatMNw
and w are linearly independent vectors. Letf1 and f2 be
vectors orthogonal tow andMNw, respectively. To place an
iterate onto the synchronous subspace we require
dyn1250 which is equivalent to requiring thatf1

Tdyn1250
and f2

Tdyn1250. Thus from Eq.~10! we obtain

dpn52
2f1

TMN
2 dyn

f1
TMNw

,
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2792 57P. J. ASTON AND C. M. BIRD
dpn1152
2f2

TMN
2 dyn

f2
Tw

.

These perturbations can be applied as soon asudpnu
,dpmax and udpn11u,dpmax. Parameter perturbations ca
then be turned off until the iterates return to a neighborho
of the fixed point at some later time.

An alternative to using two successive perturbations o
single parameter to counteract the effects of the tw
dimensional unstable manifold is to use two parameters
the parameters are p1 and p2 with wi
5fpi„x* ,(p1)* ,(p2)* …, i 51,2, then the normal linearize
map around the fixed point is

dyn115MNdyn1 1
2 w1dpn

11 1
2 w2dpn

2. ~11!

Let g1 and g2 be vectors satisfyinggi
Twj50 if iÞ j . Then

from Eq. ~11!, we obtain the parameter perturbations

dpn
152

2g1
TMNdyn

g1
Tw1

,

dpn
252

2g2
TMNdyn

g2
Tw2

,

which can be used to place an iterate onto the synchron
subspace provided thatudpn

i u,dpmax
i , i 51,2.

C. Example

We now apply the methods discussed in the preced
section to the four-dimensional Poincare´ map derived from
two coupled Duffing equations. Duffing’s equation is giv
by

d2X

dt2
1K

dX

dt
1X32X5A cosvt,

and sampling the solution of this equation once per period
the forcing term gives a two-dimensional Poincare´ map. If
we have a simple linear coupling of two such oscillators w
the coupling defined by

C5F2c c

c 2cG , D5F0 0

0 1G ,
then we obtain the first order system

Ẋ15X2 ,

Ẋ252K1X22X1
31X11A cosvt1c~Y22X2!,

Ẏ15Y2 ,

Ẏ252K2Y22Y1
31Y11A cosvt1c~X22Y2!.

We define the change of variables

x15
X11Y1

2
, x25

X21Y2

2
,

d

a
-
If

us

g

f

y15
X12Y1

2
, y25

X22Y2

2
,

and takeK as the control parameter in each system so th

K15K1dK1 , K25K1dK2 .

The equations then become

ẋ15x2 ,

ẋ252Kx22 1
2 dK1~x21y2!2 1

2 dK2~x22y2!2~x1
313x1y1

2!

1x11A cosvt,

ẏ15y2 ,

ẏ252Ky22 1
2 dK1~x21y2!1 1

2 dK2~x22y2!2~y1
313x1

2y1!

1y122cy1 .

Note that the coupling only appears in the last equation
the forcing term only in the second equation. Sampling
solutions of these equations once per period of the forc
then gives rise to a four-dimensional Poincare´ map. When
dK15dK250, the equations have a reflectional symme
and a two-dimensional synchronous subspace defined by1
5y250. Thus the linearization of the Poincare´ map at a
fixed point in the subspace will have the same structure a
Eq. ~9! whendK15dK2 .

Since the map is not known in closed form, the calcu
tion of M , w, andx* must be done using regression. In ord
to obtain reliable results, one has to carry out this regress
procedure with some care. The two blocksMS andMN of the
linearization can be calculated separately. ClearlyMS can be
calculated by finding the linearization around the fixed po
in the invariant subspace. The value of the fixed point c
also be found from the regression. By collecting data nea
the fixed point from the attractor in the whole space, t
matrix MN can be found using regression by consideri
only the normal variablesy1 andy2 since the linearized dy-
namics decouples. It is not necessary to estimate the valu
the fixed point in the normal variables since it is known th
it occurs aty15y250. The two-dimensional vectorw can be
determined by considering the effect of a perturbation in
parameter on the dynamics in the invariant subspace.
full four-dimensional vector can then be constructed fro
this, depending on the particular type of parameter pertur
tions which are employed~see@19# for more details!.

We take parameter values for the coupled Duffing os
lators ofK50.1,A53.0, andv50.2. Synchronization of the
coupled oscillators occurs whenc.0.715. Whenc.0.715, a
blowout bifurcation occurs and the dynamics are no lon
confined to the synchronous subspace for smaller value
c.

A projection of the Poincare´ section wherey1 is plotted
againstx1 is shown in Fig. 4. A saddle fixed point is locate
at (x1 ,x2 ,y1 ,y2)5(1.401,1.668,0.0,0.0) and at that point
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MS.F25.250 3.947

23.014 2.244G , MN.F21.379 20.314

1.856 0.386 G ,
w.F221.759

218.748G .
The eigenvalues ofMS are22.967 and20.039 while those
of MN are 20.939 and20.054. Thus the fixed point has a
three-dimensional stable manifold and this permits the use
the Ott, Grebogi, and Yorke method to stabilize the fixe
point in order to induce synchronous behavior. Convergen
of the controlled iterations will be governed by the largest o
the stable eigenvalues~in absolute value! and hence will be
quite slow. Parameter perturbations are activated when it
ates fall within a distance of 0.1 of the fixed point. With a
randomly chosen initial condition, a short transient is see
before the system is brought under control. Perturbations
applied until iterates lie within a distance of 131028 of the
fixed point and then turned off, with the exception of a ran
domly chosen chaos restoring perturbation. The iterates th
wander chaotically close to the synchronous subspace fo
while before they begin to wander away from the vicinity o
the synchronous subspace. Control is then reapplied wh
iterates fall close to the fixed point to maintain the dynamic
close to that subspace. However, chaotic behavior can
suppressed for quite some time while control is reapplied d
to the slow convergence of the method. Figure 5 shows
projection of the dynamics in the transverse direction. Th
dynamics remain close to the synchronous subspace for o
4000 iterations of the Poincare´ map, although much of this
time is spent near to the fixed point during the control pro
cess.

Fixed points with a three-dimensional stable manifol
prove difficult to find within the coupled Duffing system and
then, as in the above example, convergence of the con
iteration is often very slow. Thus this method is of little
practical use. Saddles with two stable directions are far mo
numerous, thus suggesting that the perturbation of one s
tem would be more preferable. We now take parameter v

FIG. 4. Poincare´ section of the coupled Duffing system with
K50.1, A53.0, v50.2, andc50.68.
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ues ofK50.5,A52.5,v52.6, andc50.13. A projection of
the Poincare´ section in this case is shown in Fig. 6. For thes
parameter values, no low order periodic points lying within
the synchronous subspace with a three-dimensional sta
manifold could be found. Thus the method of the simulta
neous perturbation of both systems cannot be implement
on this system. A period 2 point was located a
(x1 ,x2 ,y1 ,y2)5(0.174,20.052,0,0) and at that point, the
linearization of the twice iterated map gives

MS.F21.013 21.524

20.826 21.336G ,
MN.F20.823 20.934

20.627 20.743G , w.F1.562
1.738G .

The eigenvalues ofMS are20.041 and22.308 while those
of MN are20.017 and21.549. Since the two stable eigen-
values are small, convergence to the fixed point will occu
relatively rapidly under control. Again, perturbations are ac

FIG. 5. A projection of the transverse dynamics under control.

FIG. 6. Poincare´ section of the coupled Duffing system with
K50.5, A52.5, v52.6, andc50.13.
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tivated when iterates are within a distance of 0.1 of the
riod 2 point. A pair of perturbations are applied to the syst
when an iterate is within a distance of 0.01 of a period
point in order to place the iterate in the invariant subspa
thereby restoring chaotic behavior. Since iterates will ne
be placed precisely within the subspace, the state of the
tem will move away from synchronous behavior and whe
does so, parameter perturbations are applied at the ea
opportunity in order to retain synchronous behavior. In Fig
the transverse dynamics is shown when parameter pertu
tions are activated and the system brought to synchron
behavior. Thereafter, perturbations are applied when the
namics begin to stray from the vicinity of the synchrono
subspace and iterates fall within the vicinity of the period
orbit suitable for control. As can be seen from Fig. 7, ve
effective synchronization is possible using parameter per
bations.

FIG. 7. A projection of the transverse dynamics under contro
its
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IV. APPLICATIONS

The coupled systems which we have considered all ha
reflectional symmetry which derives from the two-way co
pling. However, the methods could easily be adapted to d
with one-way coupling, in which case there is still an inva
ant subspace corresponding to the synchronized state
there is no longer any symmetry in the system. Using o
way coupling and adjusting a parameter in only one of
systems, this method could be used in the context of se
communication. There are various ways in which synchro
zation of chaotic systems can be used in this area~see, for
example, the review of Ogorzalek@10#!. One such method is
to send two chaotic signals which correspond to either a z
or a one in a binary encoded message. The received si
can be fed into two different systems each of which w
synchronize with only one of the two possible transmitt
signals in order to determine which signal was sent. O
possible drawback of this method is that the transient ti
before synchronization could be long so that sufficient ti
must be allowed for synchronization to occur.

A simple alternative to this method is to send two sign
which do not naturally synchronize but can be made to s
chronize by the use of parameter perturbations in the rec
ing system. Thus the two signals which are sent are cho
so that they will synchronize with parameter perturbatio
when coupled with the identical oscillator but with the pro
erty that parameter perturbations applied in the other c
have the effect of moving iteratesaway from the invariant
subspace. If a fixed or periodic point is chosen whose ne
borhood is visited frequently by the chaotic motion and
which there is strong contraction towards the invariant s
space, then the transient time before synchronization ca
significantly reduced, thus enabling a faster transmission
the signal.
or.
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